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Abstract  

The possible structural transitions between n and 
(n - 1) thin layers of hard discs are considered. The 
apparently obvious homogeneous transition postulated 
on the basis of n = 2 is shown by an analogue experi- 
ment not to be the general solution. It is argued that the 
maximum density is retained by a 'A-form' transition 
which minimizes the density deficit at the boundary 
walls, and can be referred to different sections of a two- 
dimensional close packing. 

Close-packed structures have been extensively studied 
over many years, both for their intrinsic geometrical 
interest, and as models of real crystalline and non- 
crystalline systems (Rogers, 1958; Bernal, 1964; 
Finney, 1971a,b, 1977). The effects of the boundary 
are frequently significant, either as artefacts to be 
removed (Finney, 1971a; Bernal, 1964) or as an 
essential aspect of the system to be modelled, e.g. the 
crystal-melt interface (Visscher & Bolsterli, 1972; 
Bonissent & Mutaftschiev, 1977; Bonissent, Finney & 
Mutaftschiev, 1977). 

In two dimensions, the perfect triangular lattice has 
been proved (Fejes T6th, 1963; Coxeter, 1961) to be the 
densest possible structure for an infinite ( ~  x oo) hard- 
disc assembly. The theorem is, however, not valid in the 
case of a thin layer, where the non-negligible influence 
of the limiting walls must be taken into account. We 
consider here the peculiar case of a thin layer of hard 
discs contained between two infinite, fiat, hard walls. 

We formulate the problem as follows. Let D be the 
separation of two infinite hard walls as shown in Fig. 1. 
Let cr be the diameter of hard discs, which are to be 
packed within the box (to simplify the notation we put 
tr = 1). We now ask the question: what is the densest 
structure achievable throughout the whole range of 
thickness 1 < D < ~ ? 
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The lower limit of D = 1 is essentially trivial, the 
densest structure being a close-packed row of discs 
(Fig. 2a). In addition to this being the densest packing 
in one dimension, it can be usefully thought of as a 
section of a maximum-density two-dimensional 
hexagonal close-packed structure taken parallel to the 
10 'plane' (line). Similarly, for D = (1 + v/3/2) we 
would expect the solution to be that shown in Fig. 
2(b). This is obtained by a parallel deposition of a 
second close-packed row of discs and is again a section 
of the hexagonal lattice cut parallel to 10, but of 
thickness (1 + x/3/2). Extending to greater thicknesses, 
there exists a set of discrete values of D, 

Do(n)= 1 + (n-- 1)x/3/2, n > 1, (1) 

for which the box can be filled with strips of the perfect 
triangular lattice. The density p* of such a structure, 
defined as the ratio of the area covered by the discs 
to the area occupied by the layer, depends on the 
number of rows and is given by 

n 
p*(n)=- , n > 1, (2) 

4 1 + (n - -1)  v/3/2 - 
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Fig. 1. Geometry of the thin layer. 
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Fig. 2. Close-packed structures occurring at D = 1 + (n -- 1)V/3/2. 
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which in the limit n --, oo reaches the expected value 
n v / 3 / 6  characteristic of the perfect ( ~  x oo) triangular 
lattice. 

Equations (1) and (2) define a set of points in the 
(p* - D) plane, marked as heavy dots in Figs. 3 and 5. 
We now require to examine the possibility of connecting 
these points in a continuous way for intermediate 
values of D. One approach is to consider possible 
deformations of the above-described simple structures 
as D is changed. We start with the simplest cases and 
by induction try to extend to more complex ones, with 
interesting results. 

Compression of the two-row dense structure 
occurring at Do(2) (A~ in Fig. 3) normal to the two 
infinite walls leads inevitably through a density mini- 
mum (B~) to the row structure C r This deformation 
meets the required condition of density continuity, and 
connects the Do(2 ) and Do(1 ) solutions. We note also 
that the structure B~ (occurring close to the minimum- 
density point) can be considered as a thin section of 
thickness (1 + l /v /2  ) cut from a square primitive 
packing parallel to the 11 line, removing all discs inter- 
sected by the walls. 

When considering the apparently analogous defor- 
mation of the perfect three-row layer (A 2 in Fig. 3), we 
come to difficulties. Again the structure passes through 
the low-density square lattice section at BE, but ceases  
to ex is t  be low D = 2, where it reaches its metastable 
final state (C 2 in Fig. 3). This state is also related to the 
two-dimensional infinite closest packing being a section 
of thickness 2, cut parallel to the 11 line. The orien- 
tation is, however, unfavourable for a high density, a 
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relatively large area being left empty upon removal of 
those discs intersecting the walls. 

Similar difficulties arise when considering analogous 
deformations of higher-row structures. Moreover, the 
behaviours of even- and odd-row structures appear 
rather different and, for n > 3, Do(n -- 1) appears 
inaccessible from Do(n ) . 

Thus, apart from the special case of Do(2 ) --, Do(l), 
these homogeneous deformations through a square 
lattice section appear not to provide satisfactory 
solutions. 

An unexpected alternative is provided by a very 
simple analogue experiment in which a set of ball 
bearings placed on a flat surface is pressed between 
two parallel rulers. Instead of the homogeneous defor- 
mation discussed above, the layer transforms into a 
structure made up of regions of densely packed 
triangular lattice (Fig. 4) which slide past each other 
until a new (n - 1)-row perfect triangular lattice section 
is formed at Do(n - 1). 

The density of such a 'A-form' structure is given in 
general by 

p* (n, D) 

zr n ( n -  1) 
8 ,(3) n - - 2  ) 

D ~ + [ 1 - - I D - - l - - ( n - -  1)¢3/212] I/2 

where D E [Do(n -- 1), Do(n)] for n > 2. The density 
thickness variation is shown in Fig. 5. This experi- 
mentally observed A-form structure fulfils our require- 
ment of continuity and is consistent with the discrete 
solutions at Do(n ) . Its density is also higher than that of 
the postulated homogeneous deformations. 

Fig. 4. Schematic view of the A form. 
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Fig. 3. Postulated homogeneous deformation and its density. 
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Fig. 5. Density of the A form (solid line). For comparison the 

density of the homogeneous deformation is also plotted (broken 
line). 
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We have been unable to prove to our satisfaction 
that the A form provides the maximum-density structure 
for intermediate values of D. The theory of packing in 
two dimensions is insufficiently advanced to be able to 
assert rigorously that some other - perhaps more 
homogeneous - structure not containing close-packed 
regions cannot be found with a density greater than 
the minimum observed during the Do(n) --, Do(n - 1) 
transition, although considering the much lower mini- 
mum density through which the simple homogeneous 
deformation passes (Figs. 3 and 5), the existence of such 
a structure appears very unlikely. Restricting ourselves 
to a mechanism involving the slippage of close-packed 
regions, however, the A form appears to fulfil the con- 
dition of maximum density during the transition. The 
domains of close-packed structure in each A form are 
the maximum possible for a transformation from 
Do(n ) --, Do(n - 1) which also provide the minimum 
degree of mismatch at the domain edges, and which 
thus give a maximum density in the intermediate region. 
The total length of the fault line should be a minimum, 
and allow regular slippage; this rules out irregular 
routes for the fault fine, which would either open up 
large gaps (possibly full vacancies) or lock the tran- 
sitional structure in an intermediate position. 

We can now reassess the previous discussion of the 
homogeneous deformation with interesting results. 
Referring again to Fig. 3, it becomes clear that for 
Do(2 ) --, Do(1 ) the homogeneous deformation and 
A-form structures are identical. Thus, for Do(3) -~ Do(2), 
the A form might be considered as a homogeneous 
deformation of the largest close-packed domains which 
the transformation can accommodate. The width of the 
largest close-packed domain is evidently identical to 
Do(n--  1). 

Fig. 6. Collective movement leading from the homogeneous to the 
A form. 

Further consideration of the homogeneous defor- 
mation demonstrates it to be unstable (at least in the 
early stage of its development) when subjected to the 
specific cooperative movement shown in Fig. 6 which 
transforms the homogeneous form into the A structure 
of higher density. 
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